
Vision HDL Toolbox™
User's Guide

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Vision HDL Toolbox™ User's Guide
© COPYRIGHT 2015–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
March 2015 Online only New for Version 1.0 (Release R2015a)
September 2015 Online only Revised for Version 1.1 (Release R2015b)
March 2016 Online only Revised for Version 1.2 (Release R2016a)
September 2016 Online only Revised for Version 1.3 (Release R2016b)
March 2017 Online only Revised for Version 1.4 (Release R2017a)
September 2017 Online only Revised for Version 1.5 (Release R2017b)
March 2018 Online only Revised for Version 1.6 (Release 2018a)
September 2018 Online only Revised for Version 1.7 (Release 2018b)
March 2019 Online only Revised for Version 1.8 (Release 2019a)
September 2019 Online only Revised for Version 2.0 (Release 2019b)

Streaming Pixel Interface
1

Streaming Pixel Interface . 1-2
What Is a Streaming Pixel Interface? 1-2
How Does a Streaming Pixel Interface Work? 1-2
Why Use a Streaming Pixel Interface? 1-4
Pixel Stream Conversion Using Blocks and System Objects . . . 1-4
Timing Diagram of Single Pixel Serial Interface 1-6
Timing Diagram of Multipixel Serial Interface 1-8

Filter Multipixel Video Streams . 1-10

Pixel Control Bus . 1-20

Pixel Control Structure . 1-22

Convert Camera Control Signals to pixelcontrol Format 1-23

Integrate Vision HDL Blocks Into Camera Link System 1-29

Algorithms
2

Edge Padding . 2-2

v

Contents

Code Generation and Deployment
3

Accelerate a MATLAB Design With MATLAB Coder 3-2

HDL Code Generation from Vision HDL Toolbox 3-3
What Is HDL Code Generation? . 3-3
HDL Code Generation Support in Vision HDL Toolbox 3-3
Streaming Pixel Interface in HDL . 3-3

Blocks and System Objects Supporting HDL Code Generation
. 3-5

Blocks . 3-5
System Objects . 3-6

Generate HDL Code From Simulink . 3-7
Introduction . 3-7
Prepare Model . 3-7
Generate HDL Code . 3-7
Generate HDL Test Bench . 3-7

Generate HDL Code From MATLAB . 3-9
Create an HDL Coder Project . 3-9
Generate HDL Code . 3-9

Modeling External Memory . 3-11
Frame Buffer . 3-12
Random Access . 3-14

HDL Cosimulation . 3-16

FPGA-in-the-Loop . 3-17
FPGA-in-the-Loop Simulation with Vision HDL Toolbox Blocks

. 3-17
FPGA-in-the-Loop Simulation with Multipixel Streaming 3-19
FPGA-in-the-Loop Simulation with Vision HDL Toolbox System

Objects . 3-21

Prototype Vision Algorithms on Zynq-Based Hardware 3-25
Video Capture . 3-25
Reference Design . 3-25
Deployment and Generated Models 3-26

vi Contents

Examples
4

Select Region of Interest . 4-2

Construct a Filter Using Line Buffer . 4-8

Convert RGB Image to YCbCr 4:2:2 Color Space 4-10

Compute Negative Image . 4-12

Adapt Image Filter Coefficients from Frame to Frame 4-14

vii

Streaming Pixel Interface

1

Streaming Pixel Interface
In this section...
“What Is a Streaming Pixel Interface?” on page 1-2
“How Does a Streaming Pixel Interface Work?” on page 1-2
“Why Use a Streaming Pixel Interface?” on page 1-4
“Pixel Stream Conversion Using Blocks and System Objects” on page 1-4
“Timing Diagram of Single Pixel Serial Interface” on page 1-6
“Timing Diagram of Multipixel Serial Interface” on page 1-8

What Is a Streaming Pixel Interface?
In hardware, processing an entire frame of video at one time has a high cost in memory
and area. To save resources, serial processing is preferable in HDL designs. Vision HDL
Toolbox blocks and System objects operate on a pixel, line, or neighborhood rather than a
frame. The blocks and objects accept and generate video data as a serial stream of pixel
data and control signals. The control signals indicate the relative location of each pixel
within the image or video frame. The protocol mimics the timing of a video system,
including inactive intervals between frames. Each block or object operates without full
knowledge of the image format, and can tolerate imperfect timing of lines and frames.

All Vision HDL Toolbox blocks and System objects support single pixel streaming (with 1
pixel per cycle). Some blocks and System objects also support multipixel streaming (with
4 or 8 pixels per cycle) for high-rate or high-resolution video. Multipixel streaming
increases hardware resources to support higher video resolutions with the same
hardware clock rate as a smaller resolution video. HDL code generation for multipixel
streaming is not supported with System objects. Use the equivalent blocks to generate
HDL code for multipixel algorithms.

How Does a Streaming Pixel Interface Work?
Video capture systems scan video signals from left to right and from top to bottom. As
these systems scan, they generate inactive intervals between lines and frames of active
video.

The horizontal blanking interval is made up of the inactive cycles between the end of one
line and the beginning of the next line. This interval is often split into two parts: the front

1 Streaming Pixel Interface

1-2

porch and the back porch. These terms come from the synchronize pulse between lines in
analog video waveforms. The front porch is the number of samples between the end of the
active line and the synchronize pulse. The back porch is the number of samples between
the synchronize pulse and the start of the active line.

The vertical blanking interval is made up of the inactive cycles between the ending active
line of one frame and the starting active line of the next frame.

The scanning pattern requires start and end signals for both horizontal and vertical
directions. The Vision HDL Toolbox streaming pixel protocol includes the blanking
intervals, and allows you to configure the size of the active and inactive frame.

 Streaming Pixel Interface

1-3

Why Use a Streaming Pixel Interface?
Format Independence

The blocks and objects using this interface do not need a configuration option for the
exact image size or the size of the inactive regions. In addition, if you change the image
format for your design, you do not need to update each block or object. Instead, update
the image parameters once at the serialization step. Some blocks and objects still require
a line buffer size parameter to allocate memory resources.

By isolating the image format details, you can develop a design using a small image for
faster simulation. Then once the design is correct, update to the actual image size.

Error Tolerance

Video can come from various sources such as cameras, tape storage, digital storage, or
switching and insertion gear. These sources can introduce timing problems. Human vision
cannot detect small variance in video signals, so the timing for a video system does not
need to be perfect. Therefore, video processing blocks must tolerate variable timing of
lines and frames.

By using a streaming pixel interface with control signals, each Vision HDL Toolbox block
or object starts computation on a fresh segment of pixels at the start-of-line or start-of-
frame signal. The computation occurs whether or not the block or object receives the end
signal for the previous segment.

The protocol tolerates minor timing errors. If the number of valid and invalid cycles
between start signals varies, the blocks or objects continue to operate correctly. Some
Vision HDL Toolbox blocks and objects require minimum horizontal blanking regions to
accommodate memory buffer operations.

Pixel Stream Conversion Using Blocks and System Objects
In Simulink®, use the Frame To Pixels block to convert framed video data to a stream of
pixels and control signals that conform to this protocol. The control signals are grouped in
a nonvirtual bus data type called pixelcontrol. You can configure the block to return a
pixel stream with 1, 4, or 8 pixels per cycle.

In MATLAB®, use the visionhdl.FrameToPixels object to convert framed video data
to a stream of pixels and control signals that conform to this protocol. The control signals

1 Streaming Pixel Interface

1-4

are grouped in a structure data type. You can configure the object to create a pixel stream
with 1, 4, or 8 pixels per cycle.

If your input video is already in a serial format, you can design your own logic to generate
pixelcontrol control signals from your existing serial control scheme. For example, see
“Convert Camera Control Signals to pixelcontrol Format” on page 1-23 and “Integrate
Vision HDL Blocks Into Camera Link System” on page 1-29.

Supported Pixel Data Types

Vision HDL Toolbox blocks and objects include ports or arguments for streaming pixel
data. Each block and object supports one or more pixel formats. The supported formats
vary depending on the operation the block or object performs. This table details common
video formats supported by Vision HDL Toolbox.

Type of Video Pixel Format
Binary Each pixel is represented by a single boolean or logical value. Used

for true black-and-white video.
Grayscale Each pixel is represented by luma, which is the gamma-corrected

luminance value. This pixel is a single unsigned integer or fixed-point
value.

Color Each pixel is represented by 2 to 4 unsigned integer or fixed-point
values representing the color components of the pixel. Vision HDL
Toolbox blocks and objects use gamma-corrected color spaces, such as
R'G'B' and Y'CbCr.

To set up multipixel streaming for color video, use a separate Frame To
Pixels block for each color component. For example, for a R'G'B' stream
with 4 pixels per cycle, use three Frame To Pixels blocks to create three
vectors of 4 pixels per cycle. The pixelcontrol bus for all three
components is identical, so you need to carry only one bus forward
through your design.

Vision HDL Toolbox blocks have an input or output port, pixel, for the pixel data. Vision
HDL Toolbox System objects expect or return an argument representing the pixel data.
The following table describes the format of the pixel data.

 Streaming Pixel Interface

1-5

Port or
Argument

Description Data Type

pixel • Single pixel streaming — A scalar that
represents a binary or grayscale pixel value
or a row vector of two to four values
representing a color pixel

• Multipixel streaming — Column vector of
four or eight pixel values

You can simulate System objects with a
multipixel streaming interface, but they are
not supported for HDL code generation.
Use the equivalent blocks to generate HDL
code for multipixel algorithms.

Supported data types can
include:

• boolean or logical
• uint or int
• fixdt()

double and single data types
are supported for simulation,
but not for HDL code
generation.

Streaming Pixel Control Signals

Vision HDL Toolbox blocks and objects include ports or arguments for control signals
relating to each pixel. These five control signals indicate the validity of a pixel and its
location in the frame. For multipixel streaming, each vector of pixel values has one set of
control signals.

In Simulink, the control signal port is a nonvirtual bus data type called pixelcontrol.
For details of the bus data type, see “Pixel Control Bus” on page 1-20.

In MATLAB, the control signal argument is a structure. For details of the structure data
type, see “Pixel Control Structure” on page 1-22.

Timing Diagram of Single Pixel Serial Interface
To illustrate the streaming pixel protocol, this example converts a frame to a sequence of
control and data signals. Consider a 2-by-3 pixel image. To model the blanking intervals,
configure the serialized image to include inactive pixels in these areas around the active
image:

• 1-pixel-wide back porch
• 2-pixel-wide front porch
• 1 line before the first active line

1 Streaming Pixel Interface

1-6

• 1 line after the last active line

You can configure the dimensions of the active and inactive regions with the Frame To
Pixels block or the visionhdl.FrameToPixels object.

In the figure, the active image area is in the dashed rectangle, and the inactive pixels
surround it. The pixels are labeled with their grayscale values.

The block or object serializes the image from left to right, one line at a time. The timing
diagram shows the control signals and pixel data that correspond to this image, which is
the serial output of the Frame To Pixels block for this frame, configured for single-pixel
streaming.

For an example using the Frame to Pixels block to serialize an image, see “Design Video
Processing Algorithms for HDL in Simulink”.

For an example using the FrameToPixels object to serialize an image, see “Design a
Hardware-Targeted Image Filter in MATLAB”.

 Streaming Pixel Interface

1-7

Timing Diagram of Multipixel Serial Interface
This example converts a frame to a multipixel stream with 4 pixels per cycle and
corresponding control signals. Consider a 64-pixel-wide frame with these inactive areas
around the active image.

• 4-pixel-wide back porch
• 4-pixel-wide front porch
• 4 lines before the first active line
• 4 lines after the last active line

The Frame to Pixels block configured for multipixel streaming returns pixel vectors
formed from the pixels of each line in the frame from left to right. This diagram shows the
top-left corner of the frame. The gray pixels show the active area of the frame, and the
zero-value pixels represent blanking pixels. The label on each active pixel represents the
location of the pixel in the frame. The highlighted boxes show the sets of pixels streamed
on one cycle. The pixels in the inactive region are also streamed four at a time. The gray
box shows the four blanking pixels streamed the cycle before the start of the active
frame. The blue box shows the four pixel values streamed on the first valid cycle of the
frame, and the orange box shows the four pixel values streamed on the second valid cycle
of the frame. The green box shows the first four pixels of the next active line.

This waveform shows the multipixel streaming data and control signals for the first line of
the same frame, streamed with 4 pixels per cycle. The pixelcontrol signals that apply
to each set of four pixel values are shown below the data signals. Because the vector has
only one valid signal, the pixels in the vector are either all valid or all invalid. The

1 Streaming Pixel Interface

1-8

hStart and vStart signals apply to the pixel with the lowest index in the vector. The
hEnd and vEnd signals apply to the pixel with the highest index in the vector.

Prior to the time period shown, the initial vertical blanking pixels are streamed four at a
time, with all control signals set to false. This waveform shows the pixel stream of the
first line of the image. The gray, blue, and orange boxes correspond to the highlighted
areas of the frame diagram. After the first line is complete, the stream has two cycles of
horizontal blanking that contains 8 invalid pixels (front and back porch). Then, the
waveform shows the next line in the stream, starting with the green box.

For an example model that uses multipixel streaming, see “Filter Multipixel Video
Streams” on page 1-10.

See Also
Frame To Pixels | Pixels To Frame | visionhdl.FrameToPixels |
visionhdl.PixelsToFrame

Related Examples
• “Design Video Processing Algorithms for HDL in Simulink”
• “Design a Hardware-Targeted Image Filter in MATLAB”
• “Filter Multipixel Video Streams” on page 1-10

 See Also

1-9

Filter Multipixel Video Streams
This example shows how to design filters that operate on a multipixel input video stream.
Use multipixel streaming to process high-resolution or high-frame-rate video with the
same synthesized clock frequency as a single-pixel streaming interface. Multipixel
streaming also improves simulation speed and throughput because fewer iterations are
required to process each frame, while maintaining the hardware benefits of a streaming
interface.

The example model has three subsystems which each perform the same algorithm:

• SinglePixelGaussianEdge: Uses the Image Filter and Edge Detector blocks to
operate on a single-pixel stream. This subsystem shows how the rates and interfaces
for single-pixel streaming compare with multipixel designs.

• MultiPixelGaussianEdge: Uses the Image Filter and Edge Detector blocks to operate
on a multipixel stream. This subsystem shows how to use the multipixel interface with
library blocks.

• MultiPixelCustomGaussianEdge: Uses the Line Buffer block to build a Gaussian
filter and Sobel edge detection for a multipixel stream. This subsystem shows how to
use the Line Buffer output for multipixel design.

Processing multipixel video streams allows for higher frame rates to be achieved without
a corresponding increase to the clock frequency. Each of the subsystems can achieve
200MHz clock frequency on a Xilinx ZC706 board. The 480p video stream has Total
pixels per line x Total video lines = 800*525 cycles per frame. With a single pixel
stream you can process 200M/(800*525) = 475 frames per second. In the multipixel
subsystem, 4 pixels are processed on each cycle, which reduces the number of cycles per
line to 200. This means that with a multipixel stream operating on 4 pixels at a time, at
200MHz, on a 480p stream, 1900 frames can be processed per second. If the resolution is
increased from 480p to 1080p, 80 frames per second can be achieved in the single pixel
case versus 323 frames per second for 4 pixels at a time or 646 frames per second for 8
pixels at a time.

1 Streaming Pixel Interface

1-10

Multipixel Streaming Using Library Blocks

Generate a multipixel stream from the Frame to Pixels block by setting Number of
pixels to 4 or 8. The default value of 1 returns a scalar pixel stream with a sample rate of
Total pixels per line * Total video lines faster than the frame rate. This rate shows red
in the example model. The two multipixel subsystems use a multipixel stream with
Number of pixels set to 4. This configuration returns 4 pixels on each clock cycle and
has a sample rate of (Total pixels per line/4) * Total video lines. The lower output rate,
which is green in the model, shows that you can increase either the input frame rate or
resolution by a factor of 4 and therefore process 4 times as many pixels in the same frame
period using the same clock frequency as the single pixel case.

The SinglePixelGaussianEdge and MultiPixelGaussianEdge subsystems compute the
same result using the Image Filter and Edge Detector blocks.

In MultiPixelGaussianEdge, the blocks accept and return four pixels on each clock
cycle. You do not have to configure the blocks for multipixel streaming, they detect the
input size on the port. The pixelcontrol bus indicates the validity and location in the
frame of each set of four pixels. The blocks buffer the [4x1] stream to form four
[KernelHeight x KernelWidth] kernels, and compute four convolutions in parallel to give
a [4x1] output.

 Filter Multipixel Video Streams

1-11

Custom Multipixel Algorithms

The MultiPixelCustomGaussianEdge subsystem uses the Line Buffer block to
implement a custom filtering algorithm. This subsystem is similar to how the library
blocks internally implement multipixel kernel operations. The Image Filter and Edge
Detector blocks use more detailed optimizations than are shown here. This
implementation shows a starting point for building custom multipixel algorithms using the
output of the Line Buffer block.

The custom filter and custom edge detector use the Line Buffer block to return successive
[KernelHeight x NumberofPixels] regions. Each region is passed to the KernelIndexer
subsystem which uses buffering and indexing logic to form Number of Pixels *
[KernelHeight x KernelWidth] filter kernels. Then each kernel is passed to a separate
FilterKernel subsystem to perform convolutions in parallel.

Form Kernels from Line Buffer Output

The KernelIndexer subsystem forms 4 [5x5] filter kernels from the 2-D output of the Line
Buffer block.

1 Streaming Pixel Interface

1-12

The diagram shows how the filter kernel is extracted from the [5x4] output stream, for the
kernel that is centered on the first pixel in the [4x1] output. This first kernel includes
pixels from 2 adjacent [5x4] Line Buffer outputs.

 Filter Multipixel Video Streams

1-13

The kernel centered on the last pixel in the [4x1] output also includes the third adjacent
[5x4] output. So, to form four [5x5] kernels, the subsystem must access columns from
three [5x4] matrices.

1 Streaming Pixel Interface

1-14

The KernelIndexer subsystem uses the current [5x4] input, and stores two more [5x4]
matrices using registers enabled by shiftEnable. This design is similar to the tapped
delay line used with a Line Buffer using single pixel streaming. The subsystem then
accesses pixel data across the columns to form the four [5x5] kernels. The Image Filter
block uses this same logic internally when the block has multipixel input. The block
automatically designs this logic at compile time for any supported kernel size.

Implement Filters

Since the input multipixel stream is a [4x1] vector, the filters must perform four
convolutions on each cycle to keep pace with the incoming data. There are four parallel
FilterKernel subsystems that each perform the same operation. The [5x5] matrix multiply
is implemented as a [25x1] vector multiply by flattening the input matrix and using a For
Each subsystem containing a pipelined multiplier. The output is passed to an adder tree.
The adder tree is also pipelined, and the pipeline latency is applied to the pixelcontrol
signal to match. The results of the four FilterKernel subsystems are then concatenated
into a [4x1] output vector.

Implement Edge Detectors

To match the algorithm of the Edge Detector block, this custom edge detector uses a
[3x3] kernel size. Compare this KernelIndexer subsystem for the [3x3] edge detection
with the [5x5] kernel described above. The algorithm still must access three successive
matrices from the output of the Line Buffer block (including padding on either side of the
kernel). However, the algorithm saves fewer columns to form a smaller filter kernel.

 Filter Multipixel Video Streams

1-15

Extending to Larger Kernel Sizes

For a [4x1] multipixel stream, the KernelIndexer logic will look similar up to [11x11]
kernel size. At that size, the number of padding pixels, (floor(11/2)) = 5, will overlap
on two [11x4] matrices returned from the Line Buffer. This overlap means the algorithm
would need to store five [5x4] matrices from the Line Buffer to form four [11x11] kernels
on each cycle.

1 Streaming Pixel Interface

1-16

Improving Simulation Time

In the default example configuration, the single pixel, multipixel, and custom multipixel
subsystems all run in parallel. The simulation speed is limited by the time processing the
single-pixel path because it requires more iterations to process the same size of frame. To
observe the simulation speed improvement for multipixel streaming, comment out the
single-pixel data path.

 Filter Multipixel Video Streams

1-17

HDL Implementation Results

HDL was generated from both the MultiPixelGaussianEdge subsystem and the
MultiPixelCustomGaussianEdge subsystem and put through Place and Route on a
Xilinx™ ZC706 board. The MultiPixelCustomGaussianEdge subsystem, which does not
attempt to optimize coefficients, had the following results -

T =

 4x2 table

 Resource Usage
 _________ _____

 DSP48 108
 Flip Flop 4195
 LUT 4655
 BRAM 12

The MultiPixelGaussianEdge subsystem, which uses the optimized Image Filter and
Edge Detector blocks uses less resources, as shown in the table below. This comparison
shows the resource savings achieved because the blocks analyze the filter structure and
pre-add repeated coefficients.

T =

 4x2 table

 Resource Usage
 _________ _____

 DSP48 16
 Flip Flop 3959
 LUT 1797
 BRAM 10

See Also
Edge Detector | Frame To Pixels | Image Filter | Pixels To Frame

1 Streaming Pixel Interface

1-18

More About
• “Streaming Pixel Interface” on page 1-2

 See Also

1-19

Pixel Control Bus
Vision HDL Toolbox blocks use a nonvirtual bus data type, pixelcontrol, for control
signals associated with serial pixel data. The bus contains 5 boolean signals indicating
the validity of a pixel and its location within a frame. You can easily connect the data and
control output of one block to the input of another, because Vision HDL Toolbox blocks
use this bus for input and output. To convert an image into a pixel stream and a
pixelcontrol bus, use the Frame to Pixels block.

Signal Description Data Type
hStart true for the first pixel in a horizontal line of a

frame
boolean

hEnd true for the last pixel in a horizontal line of a
frame

boolean

vStart true for the first pixel in the first (top) line of
a frame

boolean

vEnd true for the last pixel in the last (bottom) line
of a frame

boolean

valid true for any valid pixel boolean

For multipixel streaming, each vector of pixel values has one set of control signals.
Because the vector has only one valid signal, the pixels in the vector must be either all
valid or all invalid. The hStart and vStart signals apply to the pixel with the lowest
index in the vector. The hEnd and vEnd signals apply to the pixel with the highest index in
the vector.

Troubleshooting: When you generate HDL code from a Simulink model that uses this
bus, you may need to declare an instance of pixelcontrol bus in the base workspace. If
you encounter the error Cannot resolve variable 'pixelcontrol' when you
generate HDL code in Simulink, use the pixelcontrolbus function to create an
instance of the bus type. Then try generating HDL code again.

To avoid this issue, the Vision HDL Toolbox model template includes this line in the
InitFcn callback.

evalin('base','pixelcontrolbus')

1 Streaming Pixel Interface

1-20

See Also
Frame To Pixels | Pixels To Frame | pixelcontrolbus

More About
• “Streaming Pixel Interface” on page 1-2

 See Also

1-21

Pixel Control Structure
Vision HDL Toolbox System objects use a structure data type for control signals
associated with serial pixel data. The structure contains five logical signals indicating
the validity of a pixel and its location within a frame. You can easily pass the data and
control output arguments of one Vision HDL Toolbox System object™ as the input
arguments to another Vision HDL Toolbox System object, because the objects use this
structure for input and output control signal arguments. To convert an image into a pixel
stream and control signals, use the visionhdl.FrameToPixels System object.

Signal Description Data Type
hStart true for the first pixel in a horizontal line of a

frame
logical

hEnd true for the last pixel in a horizontal line of a
frame

logical

vStart true for the first pixel in the first (top) line of
a frame

logical

vEnd true for the last pixel in the last (bottom) line
of a frame

logical

valid true for any valid pixel logical

See Also
pixelcontrolsignals | pixelcontrolstruct | visionhdl.FrameToPixels |
visionhdl.PixelsToFrame

More About
• “Streaming Pixel Interface” on page 1-2

1 Streaming Pixel Interface

1-22

Convert Camera Control Signals to pixelcontrol Format
This example converts Camera Link® signals to the pixelcontrol structure, inverts the
pixels with a Vision HDL Toolbox object, and converts the control signals back to the
Camera Link format.

Vision HDL Toolbox™ blocks and objects use a custom streaming video format. If your
system operates on streaming video data from a camera, you must convert the camera
control signals into this custom format. Alternatively, if you integrate Vision HDL Toolbox
algorithms into existing design and verification code that operates in the camera format,
you must also convert the output signals from the Vision HDL Toolbox design back to the
camera format.

You can generate HDL code from the three functions in this example. To create local
copies of all the files in this example, so you can view and edit them, click the Open Script
button.

Create Input Data in Camera Link Format

The Camera Link format consists of three control signals: F indicates the valid frame, L
indicates each valid line, and D indicates each valid pixel. For this example, create input
vectors in the Camera Link format to represent a basic padded video frame. The vectors
describe this 2-by-3, 8-bit grayscale frame. In the figure, the active image area is in the
dashed rectangle, and the inactive pixels surround it. The pixels are labeled with their
grayscale values.

F = logical([0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]);
L = logical([0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0]);

 Convert Camera Control Signals to pixelcontrol Format

1-23

D = logical([0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0]);
pixel = uint8([0,0,0,0,0,0,0,30,60,90,0,0,0,120,150,180,0,0,0,0,0,0,0,0]);

Design Vision HDL Toolbox Algorithm

Create a function to invert the image using Vision HDL Toolbox algorithms. The function
contains a System object that supports HDL code generation. This function expects and
returns a pixel and associated control signals in Vision HDL Toolbox format.

function [pixOut,ctrlOut] = InvertImage(pixIn,ctrlIn)

 persistent invertI;
 if isempty(invertI)
 tabledata = linspace(255,0,256);
 invertI = visionhdl.LookupTable(uint8(tabledata));
 end

 % *Note:* This syntax runs only in R2016b or later. If you are using an
 % earlier release, replace each call of an object with the equivalent |step|
 % syntax. For example, replace |myObject(x)| with |step(myObject,x)|.
 [pixOut,ctrlOut] = invertI(pixIn,ctrlIn);
end

Convert Camera Link Control Signals to pixelcontrol Format

Write a custom System object to convert Camera Link signals to the Vision HDL Toolbox
control signal format. The object converts the control signals, and then calls the
pixelcontrolstruct function to create the structure expected by the Vision HDL
Toolbox System objects. This code snippet shows the logic to convert the signals.

 ctrl = pixelcontrolstruct(obj.hStartOutReg,obj.hEndOutReg,...
 obj.vStartOutReg,obj.vEndOutReg,obj.validOutReg);

 vStart = obj.FReg && ~obj.FPrevReg;
 vEnd = ~F && obj.FReg;
 hStart = obj.LReg && ~obj.LPrevReg;
 hEnd = ~L && obj.LReg;

 obj.vStartOutReg = vStart;
 obj.vEndOutReg = vEnd;
 obj.hStartOutReg = hStart;
 obj.hEndOutReg = hEnd;
 obj.validOutReg = obj.DReg;

1 Streaming Pixel Interface

1-24

The object stores the input and output control signal values in registers. vStart goes
high for one cycle at the start of F. vEnd goes high for one cycle at the end of F. hStart
and hEnd are derived similarly from L. The object returns the current value of ctrl each
time you call it.

This processing adds two cycles of delay to the control signals. The object passes through
the pixel value after matching delay cycles. For the complete code for the System object,
see CAMERALINKtoVHT_Adapter.m.

Convert pixelcontrol to Camera Link

Write a custom System object to convert Vision HDL Toolbox signals back to the Camera
Link format. The object calls the pixelcontrolsignals function to flatten the control
structure into its component signals. Then it computes the equivalent Camera Link
signals. This code snippet shows the logic to convert the signals.

 [hStart,hEnd,vStart,vEnd,valid] = pixelcontrolsignals(ctrl);

 Fnew = (~obj.FOutReg && vStart) || (obj.FPrevReg && ~obj.vEndReg);
 Lnew = (~obj.LOutReg && hStart) || (obj.LPrevReg && ~obj.hEndReg);

 obj.FOutReg = Fnew;
 obj.LOutReg = Lnew;
 obj.DOutReg = valid;

The object stores the input and output control signal values in registers. F is high from
vStart to vEnd. L is high from hStart to hEnd. The object returns the current values of
FOutReg, LOutReg, and DOutReg each time you call it.

This processing adds one cycle of delay to the control signals. The object passes through
the pixel value after a matching delay cycle. For the complete code for the System object,
see VHTtoCAMERALINKAdapter.m.

Create Conversion Functions That Support HDL Code Generation

Wrap the converter System objects in functions, similar to InvertImage, so you can
generate HDL code for these algorithms.

function [ctrl,pixelOut] = CameraLinkToVisionHDL(F,L,D,pixel)
% CameraLink2VisionHDL : converts one cycle of CameraLink control signals
% to Vision HDL format, using a custom System object.
% Introduces two cycles of delay to both ctrl signals and pixel data.

 Convert Camera Control Signals to pixelcontrol Format

1-25

persistent CL2VHT;
 if isempty(CL2VHT)
 CL2VHT = CAMERALINKtoVHT_Adapter();
 end

 [ctrl,pixelOut] = CL2VHT(F,L,D,pixel);

See CameraLinkToVisionHDL.m, and VisionHDLToCameraLink.m.

Write a Test Bench

To invert a Camera Link pixel stream using these components, write a test bench script
that:

1 Preallocates output vectors to reduce simulation time
2 Converts the Camera Link control signals for each pixel to the Vision HDL Toolbox

format
3 Calls the Invert function to flip each pixel value
4 Converts the control signals for that pixel back to the Camera Link format

[~,numPixelsPerFrame] = size(pixel);
pixOut = zeros(numPixelsPerFrame,1,'uint8');
pixel_d = zeros(numPixelsPerFrame,1,'uint8');
pixOut_d = zeros(numPixelsPerFrame,1,'uint8');
DOut = false(numPixelsPerFrame,1);
FOut = false(numPixelsPerFrame,1);
LOut = false(numPixelsPerFrame,1);
ctrl = repmat(pixelcontrolstruct,numPixelsPerFrame,1);
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

for p = 1:numPixelsPerFrame
 [pixel_d(p),ctrl(p)] = CameraLinkToVisionHDL(pixel(p),F(p),L(p),D(p));
 [pixOut(p),ctrlOut(p)] = Invert(pixel_d(p),ctrl(p));
 [pixOut_d(p),FOut(p),LOut(p),DOut(p)] = VisionHDLToCameraLink(pixOut(p),ctrlOut(p));
end

View Results

The resulting vectors represent this inverted 2-by-3, 8-bit grayscale frame. In the figure,
the active image area is in the dashed rectangle, and the inactive pixels surround it. The
pixels are labeled with their grayscale values.

1 Streaming Pixel Interface

1-26

If you have a DSP System Toolbox™ license, you can view the vectors as signals over time
using the Logic Analyzer. This waveform shows the pixelcontrol and Camera Link
control signals, the starting pixel values, and the delayed pixel values after each
operation.

 Convert Camera Control Signals to pixelcontrol Format

1-27

See Also
pixelcontrolsignals | pixelcontrolstruct

More About
• “Streaming Pixel Interface” on page 1-2

1 Streaming Pixel Interface

1-28

Integrate Vision HDL Blocks Into Camera Link System
This example shows how to design a Vision HDL Toolbox algorithm for integration into an
existing system that uses the Camera Link® signal protocol.

Vision HDL Toolbox™ blocks use a custom streaming video format. If you integrate Vision
HDL Toolbox algorithms into existing design and verification code that operates in a
different streaming video format, you must convert the control signals at the boundaries.
The example uses custom System objects to convert the control signals between the
Camera Link format and the Vision HDL Toolbox pixelcontrol format. The model
imports the System objects to Simulink® by using the MATLAB System block.

Structure of the Model

This model imports pixel data and control signals in the Camera Link format from the
MATLAB® workspace. The CameraLink_InvertImage subsystem is designed for
integration into existing systems that use Camera Link protocol. The
CameraLink_InvertImage subsystem converts the control signals from the Camera
Link format to the pixelcontrol format, modifies the pixel data using the Lookup Table
block, and then converts the control signals back to the Camera Link format. The model
exports the resulting data and control signals to workspace variables.

Structure of the Subsystem

The CameraLink2VHT and VHT2CameraLink blocks are MATLAB System blocks that
point to custom System objects. The objects convert between Camera Link signals and the
pixelcontrol format used by Vision HDL Toolbox blocks and objects.

You can put any combination of Vision HDL Toolbox blocks into the middle of the
subsystem. This example uses an inversion Lookup Table.

 Integrate Vision HDL Blocks Into Camera Link System

1-29

You can generate HDL from this subsystem.

Import Data in Camera Link Format

Camera Link consists of three control signals: F indicates the valid frame, L indicates
each valid line, and D indicates each valid pixel. For this example, the input data and
control signals are defined in the InitFcn callback. The vectors describe this 2-by-3, 8-
bit grayscale frame. In the figure, the active image area is in the dashed rectangle, and
the inactive pixels surround it. The pixels are labeled with their grayscale values.

 FIn = logical([0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]);
 LIn = logical([0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0]);
 DIn = logical([0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0]);
 pixIn = uint8([0,0,0,0,0,0,0,30,60,90,0,0,0,120,150,180,0,0,0,0,0,0,0,0]);

1 Streaming Pixel Interface

1-30

Convert Camera Link Control Signals to pixelcontrol Format

Write a custom System object to convert Camera Link signals to the Vision HDL Toolbox
format. This example uses the object designed in the “Convert Camera Control Signals to
pixelcontrol Format” on page 1-23 example.

The object converts the control signals, and then creates a structure that contains the
new control signals. When the object is included in a MATLAB System block, the block
translates this structure into the bus format expected by Vision HDL Toolbox blocks. For
the complete code for the System object, see CAMERALINKtoVHT_Adapter.m.

Create a MATLAB System block and point it to the System object.

Design Vision HDL Toolbox Algorithm

Select Vision HDL Toolbox blocks to process the video stream. These blocks accept and
return a scalar pixel value and a pixelcontrol bus that contains the associated control
signals. This standard interface makes it easy to connect blocks from the Vision HDL
Toolbox libraries together.

This example uses the Lookup Table block to invert each pixel in the test image. Set the
table data to the reverse of the uint8 grayscale color space.

 Integrate Vision HDL Blocks Into Camera Link System

1-31

Convert pixelcontrol to Camera Link

Write a custom System object to convert Vision HDL Toolbox signals back to the Camera
Link format. This example uses the object designed in the “Convert Camera Control
Signals to pixelcontrol Format” on page 1-23 example.

The object accepts a structure of control signals. When you include the object in a
MATLAB System block, the block translates the input pixelcontrol bus into this
structure. Then it computes the equivalent Camera Link signals. For the complete code
for the System object, see VHTtoCAMERALINKAdapter.m.

Create a second MATLAB System block and point it to the System object.

View Results

Run the simulation. The resulting vectors represent this inverted 2-by-3, 8-bit grayscale
frame. In the figure, the active image area is in the dashed rectangle, and the inactive
pixels surround it. The pixels are labeled with their grayscale values.

1 Streaming Pixel Interface

1-32

If you have a DSP System Toolbox™ license, you can view the signals over time using the
Logic Analyzer. Select all the signals in the CameraLink_InvertImage subsystem for
streaming, and open the Logic Analyzer. This waveform shows the input and output
Camera Link control signals and pixel values at the top, and the input and output of the
Lookup Table block in pixelcontrol format at the bottom. The pixelcontrol busses
are expanded to observe the boolean control signals.

 Integrate Vision HDL Blocks Into Camera Link System

1-33

For more info on observing waveforms in Simulink, see “Inspect and Measure Transitions
Using the Logic Analyzer” (DSP System Toolbox).

Generate HDL Code for Subsystem

To generate HDL code you must have an HDL Coder™ license.

To generate the HDL code, use the following command.

 makehdl('CameraLinkAdapterEx/CameraLink_InvertImage')

1 Streaming Pixel Interface

1-34

You can now simulate and synthesize these HDL files along with your existing Camera
Link system.

See Also

More About
• “Streaming Pixel Interface” on page 1-2

 See Also

1-35

Algorithms

2

Edge Padding
To perform a kernel-based operation such as filtering on a pixel at the edge of a frame,
Vision HDL Toolbox algorithms pad the edges of the frame with extra pixels. These
padding pixels are used for internal calculation only. The output frame has the same
dimensions as the input frame. The padding operation assigns a pattern of pixel values to
the inactive pixels around a frame. Vision HDL Toolbox algorithms provide padding by
constant value, replication, or symmetry. Some blocks and System objects enable you to
select from these padding methods.

The diagrams show the top-left corner of a frame, with padding added to accommodate a
5 × 5 filter kernel. When computing the filtered value for the top-left active pixel, the
algorithm requires two rows and two columns of padding. The edge of the active image is
indicated by the double line.

• Constant — Each added pixel is assigned the same value. On some blocks and
System objects you can specify the constant value. The value 0, representing black, is
a reserved value in some video standards. It is common to choose a small number,
such as 16, as a near-black padding value.

In the diagram, C represents the constant value assigned to the inactive pixels around
the active frame.

2 Algorithms

2-2

• Replicate — The pixel values at the edge of the active frame are repeated to make
rows and columns of padding pixels.

The diagram shows the pattern of replicated values assigned to the inactive pixels
around the active frame.

• Symmetric — The padding pixels are added such that they mirror the edge of the
image.

The diagram shows the pattern of symmetric values assigned to the inactive pixels
around the active frame. The pixel values are symmetric about the edge of the image
in both dimensions.

 Edge Padding

2-3

Padding requires minimum horizontal and vertical blanking periods. This interval gives
the algorithm time to add and store the extra pixels. The blanking period, or inactive pixel
region, must be at least kernel size pixels in each dimension.

See Also
Image Filter | visionhdl.ImageFilter

More About
• “Streaming Pixel Interface” on page 1-2

2 Algorithms

2-4

Code Generation and Deployment

3

Accelerate a MATLAB Design With MATLAB Coder
Vision HDL Toolbox designs in MATLAB must call one or more System objects for every
pixel. This serial processing is efficient in hardware, but is slow in simulation. One way to
accelerate simulations of these objects is to simulate using generated C code rather than
the MATLAB interpreted language.

Code generation accelerates simulation by locking down the sizes and data types of
variables inside the function. This process removes the overhead of the interpreted
language checking for size and data type in every line of code. You can compile a video
processing algorithm and test bench into MEX functions, and use the resulting MEX file
to speed up the simulation.

To generate C code, you must have a MATLAB Coder™ license.

See “Accelerate a Pixel-Streaming Design Using MATLAB Coder”.

3 Code Generation and Deployment

3-2

HDL Code Generation from Vision HDL Toolbox
In this section...
“What Is HDL Code Generation?” on page 3-3
“HDL Code Generation Support in Vision HDL Toolbox” on page 3-3
“Streaming Pixel Interface in HDL” on page 3-3

What Is HDL Code Generation?
You can use MATLAB and Simulink for rapid prototyping of hardware designs. Vision HDL
Toolbox blocks and System objects, when used with HDL Coder™, provide support for
HDL code generation. HDL Coder tools generate target-independent synthesizable
Verilog® and VHDL® code for FPGA programming or ASIC prototyping and design.

HDL Code Generation Support in Vision HDL Toolbox
Most blocks and objects in Vision HDL Toolbox support HDL code generation.

The following blocks and objects are for simulation only and are not supported for HDL
code generation :

• Frame To Pixels (visionhdl.FrameToPixels)
• Pixels To Frame (visionhdl.PixelsToFrame)
• FIL Frame To Pixels (visionhdl.FILFrameToPixels)
• FIL Pixels To Frame (visionhdl.FILPixelsToFrame)
• Measure Timing (visionhdl.MeasureTiming)

Streaming Pixel Interface in HDL
The streaming pixel bus and structure data type used by Vision HDL Toolbox blocks and
System objects is flattened into separate signals in HDL.

In VHDL, the interface is declared as:

 PORT(clk : IN std_logic;
 reset : IN std_logic;
 enb : IN std_logic;

 HDL Code Generation from Vision HDL Toolbox

3-3

 in0 : IN std_logic_vector(7 DOWNTO 0); -- uint8
 in1_hStart : IN std_logic;
 in1_hEnd : IN std_logic;
 in1_vStart : IN std_logic;
 in1_vEnd : IN std_logic;
 in1_valid : IN std_logic;
 out0 : OUT std_logic_vector(7 DOWNTO 0); -- uint8
 out1_hStart : OUT std_logic;
 out1_hEnd : OUT std_logic;
 out1_vStart : OUT std_logic;
 out1_vEnd : OUT std_logic;
 out1_valid : OUT std_logic
);

In Verilog, the interface is declared as:

 input clk;
 input reset;
 input enb;
 input [7:0] in0; // uint8
 input in1_hStart;
 input in1_hEnd;
 input in1_vStart;
 input in1_vEnd;
 input in1_valid;
 output [7:0] out0; // uint8
 output out1_hStart;
 output out1_hEnd;
 output out1_vStart;
 output out1_vEnd;
 output out1_valid;

3 Code Generation and Deployment

3-4

Blocks and System Objects Supporting HDL Code
Generation

Most blocks and objects in Vision HDL Toolbox are supported for HDL code generation.
For exceptions, see “HDL Code Generation Support in Vision HDL Toolbox” on page 3-3.
This page helps you find blocks and objects supported for HDL code generation in other
MathWorks® products.

Blocks
In the Simulink library browser, you can find libraries of blocks supported for HDL code
generation in the HDL Coder, Communications Toolbox HDL Support, and DSP
System Toolbox HDL Support block libraries.

To create a library of HDL-supported blocks from all your installed products, enter
hdllib at the MATLAB command line. This command requires an HDL Coder license.

Refer to the "Extended Capabilities > HDL Code Generation" section of each block page
for block implementations, properties, and restrictions for HDL code generation.

You can also view blocks that are supported for HDL code generation in documentation by
filtering the block reference list. Click Blocks in the blue bar at the top of the Help
window, then select the HDL code generation check box at the bottom of the left
column. The blocks are listed in their respective products. You can use the table of
contents in the left column to navigate between products and categories.

 Blocks and System Objects Supporting HDL Code Generation

3-5

System Objects
To find System objects supported for HDL code generation, see Predefined System
Objects (HDL Coder).

3 Code Generation and Deployment

3-6

Generate HDL Code From Simulink

Introduction
This page shows you how to generate HDL code from the design described in “Design
Video Processing Algorithms for HDL in Simulink”. You can generate HDL code from the
HDL Algorithm subsystem in the model.

To generate HDL code, you must have an HDL Coder license.

Prepare Model
Run the visionhdlsetup function to configure the model for HDL code generation. If
you started your design using the Vision HDL Toolbox Simulink model template, your
model is already configured for HDL code generation.

Generate HDL Code
Right-click the HDL Algorithm block, and select HDL Code > Generate HDL from
subsystem to generate HDL using the default settings. The output log of this operation is
shown in the MATLAB Command Window, along with the location of the generated files.

To change code generation options, use the HDL Code Generation section of Simulink
Configuration Parameters. For guidance through the HDL code generation process, or to
select a target device or synthesis tool, right-click on the HDL Algorithm block, and select
HDL Code > HDL Workflow Advisor.

Alternatively, from the MATLAB Command Window, you can call:

makehdl([modelname '/HDL Algorithm'])

Generate HDL Test Bench
You can select options to generate a test bench in Simulink Configuration Parameters or
in HDL Workflow Advisor.

Alternatively, to generate an HDL test bench from the command line, call:

makehdltb([modelname '/HDL Algorithm'])

 Generate HDL Code From Simulink

3-7

See Also
Functions
makehdl | makehdltb

Related Examples
• “HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor”

(HDL Coder)
• “Choose a Test Bench for Generated HDL Code” (HDL Coder)

3 Code Generation and Deployment

3-8

Generate HDL Code From MATLAB
This example show you how to generate HDL code from the design in “Design a
Hardware-Targeted Image Filter in MATLAB”.

To generate HDL code, you must have an HDL Coder license.

Create an HDL Coder Project
Copy the relevant files to a temporary folder.

functionName = 'HDLTargetedDesign';
tbName = 'VisionHDLMATLABTutorialExample';
vhtExampleDir = fullfile(matlabroot,'examples','visionhdl');
workDir = [tempdir 'vht_matlabhdl_ex'];

cd(tempdir)
[~, ~, ~] = rmdir(workDir, 's');
mkdir(workDir)
cd(workDir)

copyfile(fullfile(vhtExampleDir, [functionName,'.m*']), workDir)
copyfile(fullfile(vhtExampleDir, [tbName,'.m*']), workDir)

Open the HDL Coder app and create a new project.

coder -hdlcoder -new vht_matlabhdl_ex

In the HDL Code Generation pane, add the function file HDLTargetedDesign.m and
the test bench file VisionHDLMATLABTutorialExample.m to the project.

Click next to the signal names under MATLAB Function to define the data types for the
input and output signals of the function. The control signals are logical scalars. The
pixel data type is uint8. The pixel input is a scalar.

Generate HDL Code
1 Click Workflow Advisor to open the advisor.
2 Click HDL Code Generation to view the HDL code generation options.
3 On the Target tab, set Language to Verilog or VHDL.

 Generate HDL Code From MATLAB

3-9

4 Also on the Target tab, select Generate HDL and Generate HDL test bench.
5 On the Coding Style tab, select Include MATLAB source code as comments and

Generate report to generate a code generation report with comments and
traceability links.

6 Click Run to generate the HDL design and the test bench with reports.

Examine the log window and click the links to view the generated code and the reports.

See Also

Related Examples
• “Getting Started with MATLAB to HDL Workflow” (HDL Coder)
• “Generate HDL Code from MATLAB Code Using the Command Line Interface” (HDL

Coder)
• “HDL Code Generation for System Objects” (HDL Coder)
• “Pixel-Streaming Design in MATLAB”

3 Code Generation and Deployment

3-10

Modeling External Memory
You can model external memory using features from Computer Vision Toolbox™ Support
Package for Xilinx® Zynq®-Based Hardware or SoC Blockset™. Both products provide
models for a frame buffer or a random access interface. They both also map your
subsystem ports to physical AXI memory interfaces when you generate HDL code and
target a prototype board.

Computer Vision Toolbox Support Package for Xilinx Zynq-Based Hardware provides a
simple model of the memory interface. It does not model the timing of the interface. This
level of modeling assists with targeting a memory interface on hardware, but behavior
can differ between the simulation and the hardware. For more information, see “Model
External Memory Interfaces” (Computer Vision Toolbox Support Package for Xilinx Zynq-
Based Hardware).

SoC Blockset provides library blocks to model a memory controller and multiple memory
channels. This model calculates and visualizes memory bandwidth, burst counts, and
transaction latencies in simulation. You can also model memory accesses from a processor
as part of hardware-software co-design. Use the SoC Builder app to generate code for
FPGA and processor designs and load and run the design on a board. You can also deploy
an AXI memory interconnect monitor on your FPGA, which can return memory
transaction information for debugging and visualization in Simulink. This level of
modeling helps you verify throughput and latency requirements and enables modeling of
multiple memory consumers, including processor memory access. For more information,
see “Memory Transactions” (SoC Blockset).

 Modeling External Memory

3-11

Frame Buffer
Computer Vision Toolbox Support
Package for Xilinx Zynq-Based
Hardware

SoC Blockset

This figure shows part of the “Histogram
Equalization with Zynq-Based Hardware”
(Computer Vision Toolbox Support Package
for Xilinx Zynq-Based Hardware) example.
The Video Frame Buffer block accepts and
returns the pixel streaming interface used
by Vision HDL Toolbox blocks. It reads and
returns an entire frame when you set the
pop signal to 1. To use this block in your
designs, copy it from the example model.

This figure shows part of the “Histogram
Equalization Using Video Frame Buffer”
(SoC Blockset) example. The example
shows how to use the Memory Channel and
Memory Controller library blocks to model
a frame buffer and additional memory
consumers. You can use this model to
confirm that the memory interface meets
the throughput and latency requirements of
your design. You can measure the
bandwidth and transaction latency for each
memory consumer and check the
measurements against the total bandwidth
available from the memory. To model a
frame buffer that supports the pixel
streaming interface used by Vision HDL
Toolbox blocks, configure the Channel
type parameter of the Memory Channel
block as AXI4 Stream Video Frame
Buffer.

3 Code Generation and Deployment

3-12

Computer Vision Toolbox Support
Package for Xilinx Zynq-Based
Hardware

SoC Blockset

 Modeling External Memory

3-13

Random Access
Computer Vision Toolbox Support
Package for Xilinx Zynq-Based
Hardware

SoC Blockset

This figure shows part of the “Image
Rotation with Zynq-Based Hardware”
(Computer Vision Toolbox Support Package
for Xilinx Zynq-Based Hardware) example.
The External Memory block reads and
writes to any address in the memory. In this
case, rather than connecting the pixel
stream to the memory interface, your
custom FPGA logic must generate read and
write transactions with specific addresses.
To use this block in your designs, copy it
from the example model.

This figure shows part of the “Random
Access of External Memory” (SoC Blockset)
example. This design uses a Memory
Controller and two Memory Channel blocks
to implement a random-access interface. In
this case, rather than connecting the pixel
stream to the memory interface, your
custom FPGA logic must generate read and
write transactions with specific addresses.

3 Code Generation and Deployment

3-14

Computer Vision Toolbox Support
Package for Xilinx Zynq-Based
Hardware

SoC Blockset

See Also
“Model External Memory Interfaces” (Computer Vision Toolbox Support Package for
Xilinx Zynq-Based Hardware) | “Memory Transactions” (SoC Blockset)

 See Also

3-15

HDL Cosimulation
HDL cosimulation links an HDL simulator with MATLAB or Simulink. This communication
link enables integrated verification of the HDL implementation against the design. To
perform this integration, you need an HDL Verifier™ license. HDL Verifier cosimulation
tools enable you to:

• Use MATLAB or Simulink to create test signals and software test benches for HDL
code

• Use MATLAB or Simulink to provide a behavioral model for an HDL simulation
• Use MATLAB analysis and visualization capabilities for real-time insight into an HDL

implementation
• Use Simulink to translate legacy HDL descriptions into system-level views

See Also

More About
• “HDL Cosimulation” (HDL Verifier)

3 Code Generation and Deployment

3-16

FPGA-in-the-Loop
FPGA-in-the-loop (FIL) enables you to run a Simulink or MATLAB simulation that is
synchronized with an HDL design running on an FPGA board. This link between the
simulator and the board enables you to verify HDL implementations directly against
Simulink or MATLAB algorithms. You can apply real-world data and test scenarios from
these algorithms to the HDL design that is running on the FPGA.

In Simulink, you can use the FIL Frame To Pixels and FIL Pixels To Frame blocks to
accelerate communication between Simulink and the FPGA board. In MATLAB, you can
modify the generated code to speed up communication with the FPGA board.

FPGA-in-the-Loop Simulation with Vision HDL Toolbox Blocks
This example shows how to modify the generated FPGA-in-the-loop (FIL) model for more
efficient simulation of the Vision HDL Toolbox™ streaming video protocol.

Autogenerated FIL Model

When you generate a programming file for a FIL target in Simulink, the HDL Workflow
Advisor creates a model to compare the FIL simulation with your Simulink design. For
details of how to generate FIL artifacts for a Simulink model, see “FIL Simulation with
HDL Workflow Advisor for Simulink” (HDL Verifier).

For Vision HDL Toolbox designs, the FIL block in the generated model replicates the
pixel-streaming interface and sends one pixel at a time to the FPGA. The model shown
was generated from the example model in “Design Video Processing Algorithms for HDL
in Simulink”.

 FPGA-in-the-Loop

3-17

The top part of the model replicates your Simulink design. The generated FIL block at the
bottom communicates with the FPGA. ToFILSrc subsystem copies the pixel-stream input
of the HDL Algorithm block to the FromFILSrc subsystem. The ToFILSink subsystem
copies the pixel-stream output of the HDL Algorithm block into the Compare subsystem,
where it is compared with the output of the HDL Algorithm_fil block. For image and video
processing, this setup is slow because the model sends only a single pixel, and its
associated control signals, in each packet to and from the FPGA board.

Modified FIL Model for Pixel Streaming

To improve the communication bandwidth with the FPGA board, you can use the
generated FIL block with vector input rather than streaming. This example includes a
model, FILSimulinkWithVHTExample.slx, created by modifying the generated FIL model.
The modified model uses the FIL Frame To Pixels and FIL Pixels To Frame blocks to send
one frame at a time to the generated FIL block. You cannot run this model as is. You must
generate your own FIL block and bitstream file that use your board and connection
settings.

3 Code Generation and Deployment

3-18

To convert from the generated model to the modified model:

1 Remove the ToFILSrc, FromFILSrc, ToFILSink, and Compare subsystems, and create
a branch at the frame input of the Frame To Pixels block.

2 Insert the FIL Frame To Pixels block before the HDL Algorithm_fil block. Insert the
FIL Pixels To Frame block after the HDL Algorithm_fil block.

3 Branch the frame output of the Pixels To Frame block for comparison. You can
compare the entire frame at once with a Diff block. Compare the validOut signals
using an XOR block.

4 In the FIL Frame To Pixels and FIL Pixels To Frame blocks, set the Video format
parameter to match the video format of the Frame To Pixels and Pixels To Frame
blocks.

5 Set the Vector size in the FIL Frame To Pixels and FIL Pixels To Frame blocks to
Frame or Line. The size of the FIL Frame To Pixels vector output must match the
size of the FIL Pixels To Frame vector input. The vector size of the FIL block
interfaces does not modify the generated HDL code. It affects only the packet size of
the communication between the simulator and the FPGA board.

The modified model sends an entire frame to the FPGA board in each packet, significantly
improving the efficiency of the communication link.

FPGA-in-the-Loop Simulation with Multipixel Streaming
When using FPGA-in-the-Loop with a multipixel streaming design, you must flatten the
pixel ports to vectors for input and output of the FIL block. Use Selector blocks to

 FPGA-in-the-Loop

3-19

separate the input pixel streams into NumPixels vectors, and use a Vector Concatenate
block to recombine the output vectors.

Also, in Configuration Parameters > HDL Code Generation > Global Settings >
Coding style, select the Scalarize vector ports checkbox.

3 Code Generation and Deployment

3-20

FPGA-in-the-Loop Simulation with Vision HDL Toolbox System
Objects
This example shows how to modify the generated FPGA-in-the-loop (FIL) script for more
efficient simulation of the Vision HDL Toolbox™ streaming video protocol. For details of
how to generate FIL artifacts for a MATLAB® System object™, see “FIL Simulation with
HDL Workflow Advisor for MATLAB” (HDL Verifier).

 FPGA-in-the-Loop

3-21

Autogenerated FIL Function

When you generate a programming file for a FIL target in MATLAB, the HDL Workflow
Advisor creates a test bench to compare the FIL simulation with your MATLAB design.
For Vision HDL Toolbox designs, the DUTname_fil function in the test bench replicates
the pixel-streaming interface and sends one pixel at a time to the FPGA. DUTname is the
name of the function that you generated HDL code from.

This code snippet is from the generated test bench TBname_fil.m, generated from the
example script in “Pixel-Streaming Design in MATLAB”. The code calls the generated
DUTname_fil function once for each pixel in a frame.

for p = 1:numPixPerFrm
 [pixOutVec(p),ctrlOutVec(p)] = PixelStreamingDesignHDLDesign_fil(pixInVec(p), ctrlInVec(p));
end

The generated DUTname_fil function calls your HDL-targeted function. It also calls the
DUTname_sysobj_fil function, which contains a System object that connects to the
FPGA. DUTname_fil compares the output of the two functions to verify that the FPGA
implementation matches the original MATLAB results. This snippet is from the file
DUTname_fil.m.

% Call the original MATLAB function to get reference signal
[ref_pixOut,tmp_ctrlOut] = PixelStreamingDesignHDLDesign(pixIn,ctrlIn);

 ...

% Run FPGA-in-the-Loop
[pixOut,ctrlOut_hStart,ctrlOut_hEnd,ctrlOut_vStart,ctrlOut_vEnd,ctrlOut_valid] ...
 = PixelStreamingDesignHDLDesign_sysobj_fil(pixIn,ctrlIn_hStart,ctrlIn_hEnd,ctrlIn_vStart,ctrlIn_vEnd,ctrlIn_valid);

 ...

% Verify the FPGA-in-the-Loop output
hdlverifier.assert(pixOut,ref_pixOut,'pixOut');

For image and video processing, this setup is slow because the function sends only one
pixel, and its associated control signals, in each packet to and from the FPGA board.

Modified FIL Test Bench for Pixel Streaming

To improve the communication bandwidth with the FPGA board, you can modify the
autogenerated test bench, TBname_fil.m. The modified test bench calls the FIL System
object directly, with one frame at a time. These snippets are from the

3 Code Generation and Deployment

3-22

PixelStreamingDesignHDLTestBench_fil_frame.m script, modified from FIL artifacts
generated from the example script in “Pixel-Streaming Design in MATLAB”. You cannot
run this script as is. You must generate your own FIL System object, function, and
bitstream file that use your board and connection settings. Then, either modify your
version of the generated test bench, or modify this script to use your generated FIL
object.

Declare an instance of the generated FIL System object.

fil = class_PixelStreamingDesignHDLDesign_sysobj;

Comment out the loop over the pixels in the frame.

% for p = 1:numPixPerFrm
% [pixOutVec(p),ctrlOutVec(p)] = PixelStreamingDesignHDLDesign_fil(pixInVec(p), ctrlInVec(p));
% end

Replace the commented loop with the code below. Call the step method of the fil object
with vectors containing the whole frame of data pixels and control signals. Pass each
control signal to the object separately, as a vector of logical values. Then, recombine the
control signal vectors into a vector of structures.

[pixOutVec,hStartOut,hEndOut,vStartOut,vEndOut,validOut] = ...
 step(fil,pixInVec,[ctrlInVec.hStart]',[ctrlInVec.hEnd]',[ctrlInVec.vStart]',[ctrlInVec.vEnd]',[ctrlInVec.valid]');
ctrlOutVec = arrayfun(@(hStart,hEnd,vStart,vEnd,valid) ...
 struct('hStart',hStart,'hEnd',hEnd,'vStart',vStart,'vEnd',vEnd,'valid',valid),...
 hStartOut,hEndOut,vStartOut,vEndOut,validOut);

These code changes remove the pixel-by-pixel verification of the FIL results against the
MATLAB results. Optionally, you can add a pixel loop to call the reference function, and a
frame-by-frame comparison of the results. However, calling the original function for a
reference slows down the simulation.

for p = 1:numPixPerFrm
 [ref_pixOutVec(p),ref_ctrlOutVec(p)] = PixelStreamingDesignHDLDesign(pixInVec(p),ctrlInVec(p));
end

After the call to the fil object, compare the output vectors.

hdlverifier.assert(pixOutVec',ref_pixOutVec,'pixOut')
hdlverifier.assert([ctrlOutVec.hStart],[ref_ctrlOutVec.hStart],'hStart')
hdlverifier.assert([ctrlOutVec.hEnd],[ref_ctrlOutVec.hEnd],'hEnd')
hdlverifier.assert([ctrlOutVec.vStart],[ref_ctrlOutVec.vStart],'vStart')

 FPGA-in-the-Loop

3-23

hdlverifier.assert([ctrlOutVec.vEnd],[ref_ctrlOutVec.vEnd],'vEnc')
hdlverifier.assert([ctrlOutVec.valid],[ref_ctrlOutVec.valid],'valid')

This modified test bench sends an entire frame to the FPGA board in each packet,
significantly improving the efficiency of the communication link.

See Also
Blocks
FIL Frame To Pixels | FIL Pixels To Frame | Image Filter

Objects
visionhdl.ImageFilter

More About
• “FPGA Verification” (HDL Verifier)

3 Code Generation and Deployment

3-24

Prototype Vision Algorithms on Zynq-Based Hardware
You can use the Computer Vision Toolbox Support Package for Xilinx Zynq-Based
Hardware to prototype your vision algorithms on Zynq-based hardware that is connected
to real input and output video devices. Use the support package to:

• Capture input or output video from the board and import it into Simulink for algorithm
development and verification.

• Generate and deploy vision IP cores to the FPGA on the board. (requires HDL Coder)
• Generate and deploy C code to the ARM® processor on the board. You can route the

video data from the FPGA into the ARM® processor to develop video processing
algorithms targeted to the ARM processor. (requires Embedded Coder®)

• View the output of your algorithm on an HDMI device.

Video Capture
Using this support package, you can capture live video from your Zynq device and import
it into Simulink. The video source can be an HDMI video input to the board, an on-chip
test pattern generator included with the reference design, or the output of your custom
algorithm on the board. You can select the color space and resolution of the input frames.
The capture resolution must match that of your input camera.

Once you have video frames in Simulink, you can:

• Design frame-based video processing algorithms that operate on the live data input.
Use blocks from the Computer Vision Toolbox libraries to quickly develop frame-based,
floating-point algorithms.

• Use the Frame To Pixels block from Vision HDL Toolbox to convert the input to a pixel
stream. Design and verify pixel-streaming algorithms using other blocks from the
Vision HDL Toolbox libraries.

Reference Design
The Computer Vision Toolbox Support Package for Xilinx Zynq-Based Hardware provides
a reference design for prototyping video algorithms on the Zynq boards.

When you generate an HDL IP core for your pixel-streaming design using HDL Workflow
Advisor, the core is included in this reference design as the FPGA user logic section.
Points A and B in the diagram show the options for capturing video into Simulink.

 Prototype Vision Algorithms on Zynq-Based Hardware

3-25

The FPGA user logic can also contain an optional interface to external frame buffer
memory, which is not shown in the diagram.

Note The reference design on the Zynq device requires the same video resolution and
color format for the entire data path. The resolution you select must match that of your
camera input. The design you target to the user logic section of the FPGA must not
modify the frame size or color space of the video stream.

The reference design does not support multipixel streaming.

Deployment and Generated Models
By running all or part of your pixel-streaming design on the hardware, you speed up
simulation of your video processing system and can verify its behavior on real hardware.
To generate HDL code and deploy your design to the FPGA, you must have HDL Coder
and the HDL Coder Support Package for Xilinx Zynq Platform, as well as Xilinx Vivado®

and the Xilinx SDK.

After FPGA targeting, you can capture the live output frames from the FPGA user logic
back to Simulink for further processing and analysis. You can also view the output on an
HDMI output connected to your board. Using the generated hardware interface model,

3 Code Generation and Deployment

3-26

you can control the video capture options and read and write AXI-Lite ports on the FPGA
user logic from Simulink during simulation.

The FPGA targeting step also generates a software interface model. This model supports
software targeting to the Zynq hardware, including external mode, processor-in-the-loop,
and full deployment. It provides data path control, and an interface to any AXI-Lite ports
you defined on your FPGA targeted subsystem. From this model, you can generate ARM
code that drives or responds to the AXI-Lite ports on the FPGA user logic. You can then
deploy the code on the board to run along with the FPGA user logic. To deploy software to
the ARM processor, you must have Embedded Coder and the Embedded Coder Support
Package for Xilinx Zynq Platform.

See Also

More About
• “Computer Vision Toolbox Support Package for Xilinx Zynq-Based Hardware”

 See Also

3-27

Examples

4

Select Region of Interest
This example shows how to select a region of active frame from a video stream by using
the ROI Selector block from the Vision HDL Toolbox™.

There are numerous applications where the input video is divided into several zones. In
medical imaging, the boundaries of a tumor may be defined on an image or in a volume
for the purpose of measuring its size. In geographical information systems (GIS), an ROI
can be taken as a polygonal selection from a 2-D map.

Example Model

The example model includes a Video Source block that contains a 240p video sample.
Each pixel is a scalar uint8 value that represents intensity. The green and red lines
represent full-frame processing and pixel-stream processing, respectively.

Serialize the Image

Use Frame To Pixels block to convert a full-frame image into pixel stream. To simulate the
effect of horizontal and vertical blanking periods found in real life hardware video
systems, the active image is augmented with non-image data. For more information on

4 Examples

4-2

the streaming pixel protocol, see “Streaming Pixel Interface” on page 1-2. The Frame To
Pixels block is configured as shown:

 Select Region of Interest

4-3

4 Examples

4-4

The Number of components parameter is set to 1 for grayscale image input, and the
Video format parameter is 240p to match the video source.

In this example, the Active Video region corresponds to the 240x320 matrix of the source
image. Six other parameters, namely, Total pixels per line, Total video lines, Starting
active line, Ending active line, Front porch, and Back porch, specify how many non-
image data will be augmented on the four sides of the Active Video. For more information,
see the Frame To Pixels block reference page.

Note that the sample time of the Video Source block is determined by the product of
Total pixels per line and Total video lines.

Select Regions of Interest

The ROI Selection subsystem contains only an ROI Selector block.

Use the ROI Selector block to select regions of interest. You can use the Regions
parameter to experiment with different region sizes and examine their effect on the
output frames. In this model, the Regions parameter is set to [100 100 50 50;220
170 100 70] which represents two regions, each specified by [hPos vPos hSize
vSize]. The first region is 50-by-50 pixels and located 100 pixels to the right and 100
pixels down from the top-left corner of the active frame. The second region is 100 pixels
wide and 70 pixels tall, and is located in the bottom-right corner of the active frame.

The ROI Selector block accepts a pixel stream and a bus that contains five control signals
from the Frame To Pixels block. It returns each region as a pixel stream that uses the
same protocol, by manipulating the control signals. Each region is selected by setting the
valid signal in the output pixelcontrol bus to false for any pixels not included in
the requested region.

 Select Region of Interest

4-5

Display Regions of Interest

Use the Pixels To Frame block to convert the pixel stream back into a full frame. Since the
output of the Pixels To Frame block is a 2-D matrix of a full image, there is no further
need for the pixelcontrol bus.

The Number of components and Video format parameters of both Frame To Pixels and
Pixels To Frame are set to 1 and 240p, respectively, to match the format of the video
source. The size of each active frame is smaller than 240p after the ROI selection. The
Pixels to Frame block returns a 240-by-320 matrix with the active portion of the frame in
the top-left corner.

Run the model to display the results. The model displays the output video streams by
using three Video Viewer blocks.

• Source Image View -- The input video from the Video Source block
• ROI Selector Viewer1 -- The 50-by-50 pixel region
• ROI Selector Viewer2 -- The 100-by-70 pixel region

One frame of the source video and the two regions are shown from left to right.

The Unit Delay block on the top level of the model is to time-align the matrices for a fair
comparison.

4 Examples

4-6

Generate HDL Code

To check and generate the HDL code referenced in this example, you must have an HDL
Coder™ license.

To generate the HDL code, use the following command:

makehdl('ROISelectionHDL/ROI Selection')

To generate a test bench, use the following command:

makehdltb('ROISelectionHDL/ROI Selection')

See Also
Blocks
Frame To Pixels | Pixels To Frame

 See Also

4-7

Construct a Filter Using Line Buffer
This example shows how to use the Line Buffer block to extract neighborhoods from an
image for further processing. The model constructs a separable Gaussian filter.

Inside the HDL Algorithm subsystem, the Line Buffer block is configured for a 5-by-5
neighborhood. The output is a 5-by-1 column vector. The Gain and Sum blocks implement
separate horizontal and vertical components of a 5-by-5 Gaussian filter with a 0.75
standard deviation. After vertical filtering, the model stores the column sums in a shift
register that creates a 1-by-5 row vector. The row values are filtered again to calculate
the new central pixel value of each neighborhood.

4 Examples

4-8

You can generate HDL code from the HDL Algorithm subsystem. You must have the HDL
Coder™ software installed to run this command.

makehdl('SeparableFilterSimpleHDL/HDL Algorithm')

To generate an HDL test bench, use this command.

makehdltb('SeparableFilterSimpleHDL/HDL Algorithm')

See Also
Blocks
Frame To Pixels

Objects
visionhdl.LineBuffer

 See Also

4-9

Convert RGB Image to YCbCr 4:2:2 Color Space
This example shows how to convert a pixel stream from R'G'B' color space to Y'CbCr 4:2:2
color space.

The model imports a 480p RGB image, then the Frame to Pixels block converts it to a
pixel stream. Inside the HDL Algorithm subsystem, the Color Space Converter and
Chroma Resampler blocks convert the pixel stream to YCbCr 4:2:2 format.

The waveform of the input and output pixel stream of the Chroma Resampler block shows
the downsampling of the CbCr component values. The latency of the Chroma Resampler
block depends on the size of the antialiasing filter. This example uses the default filter,
which has 29 taps.

4 Examples

4-10

To check and generate the HDL code referenced in this example, you must have an HDL
Coder™ license.

To generate the HDL code, use the following command.

makehdl('ChromaResampleExample/HDL Algorithm')

To generate the test bench, use the following command. Note that test bench generation
takes a long time due to the large data size. Consider reducing the simulation time before
generating the test bench.

makehdltb('ChromaResampleExample/HDL Algorithm')

The part of the model between the Frame to Pixels and Pixels to Frame blocks can be
implemented on an FPGA.

See Also
Blocks
Chroma Resampler | Color Space Converter | Frame To Pixels

 See Also

4-11

Compute Negative Image
This example creates the negative of an image by looking up the opposite pixel values in a
table.

For a hardware-compatible design, the model converts the input video to a stream of pixel
values. The Frame to Pixels and Pixels to Frame blocks are configured to match the
format of the video source.

The Pixel-Stream Lookup Table subsystem contains a Lookup Table block, configured with
inversion data. The input pixel data is uint8 type, so the negative value is 255 - pixel,
or linspace(255,0,256). The output pixel data type is the same as the data type of the
table contents, in this case, uint8.

To generate and check the HDL code referenced in this example, you must have an HDL
Coder™ license.

To generate the HDL code, use the following command:

makehdl('LookupTableHDL/Pixel-Stream Lookup Table')

To infer a RAM to implement the lookup table, the LUTRegisterResetType property is
set to none. To access this property, right-click the Lookup Table block inside the
subsystem, and navigate to HDL Coder > HDL Block Properties.

To generate a test bench for the generated HDL code, use the following command:

4 Examples

4-12

makehdltb('LookupTableHDL/Pixel-Stream Lookup Table')

See Also
Blocks
Frame To Pixels | Lookup Table

 See Also

4-13

Adapt Image Filter Coefficients from Frame to Frame
This example shows how to use programmable coefficients to correct a time-varying
impairment on the input video.

There are many different techniques for filtering image and video signals that require
filter coefficients that vary from frame to frame. To dynamically change the coefficients of
the Image Filter block, set the Filter coefficients source parameter to Input port.
The Image Filter block samples the input coefficient port at the beginning of each frame.

The Example Model

The example model applies a brightness impairment to the input video, and the HDL
Filter subsystem calculates filter coefficients for each frame and corrects the
impairment. The model includes three video viewers: one for the original input video,
another for the impaired video, and the third for the result of the filter that counteracts
the impairment.

The model also includes Frame to Pixels and Pixels to Frame blocks to convert the matrix
format video to streaming format suitable for HDL modeling.

The Impairment

The impairment in this model is brightness modulation using a slow sine wave. Since the
impairment is modeled purely behaviorally, the first step is to convert the image to
double-precision values. The 16-bit counter counts up at the frame rate and the counter
value is multiplied by 2*pi/40. The sine wave output is scaled down by 0.3 and a bias of

4 Examples

4-14

1.0 is then added. These calculations result in a +/-30% change in brightness over a
period of 40 frames. After applying the impairment, the model converts back to uint8 by
using rounding with saturation.

The Filter Algorithm

The HDL Algorithm subsystem starts by extracting a region of interest in the center of the
image. Since this model is configured for a 320x240 video source, it uses a 100x100
region in the center of the video stream.

The Image Statistics block finds the mean of that central region. A new mean is computed
for each 100x100 frame. The block sets the validOut port to true to indicate when the
new mean is valid.

 Adapt Image Filter Coefficients from Frame to Frame

4-15

Compute the Scaled Grand Mean

The Adapt Grand Mean subsystem computes the correction factor required to
counteract the impairment.

You could use central-region-mean brightness directly, with a "gray-world" assumption
that the average brightness is mid-scale (128 in this case). But, a more accurate approach
is to use the previous brightness means, with the assumption that the average brightness
does not change quickly frame to frame.

Forming a mean of means is known as a grand mean, but that calculation would give
equal weight to the past frames. Instead, the subsystem weights the past frames with an
exponential fractional decay with the coefficients [1 1/2 1/4 1/8 1/16 1/32 1/64
1/64]. The last coefficient would normally be 1/128 but by adjusting that value, the sum
of the weights becomes exactly 2, making the normalizing factor a simple shift operation.
Note that the initial value of all the delay line registers is mid-scale (128) to avoid large
start-up transients in the correction.

The subsystem finds the correction factor using the current mean and the weighted grand
mean. Since the grand mean scaled up by 2, if you subtract the current mean from it, the
resulting value is the weighted grand mean plus or minus the error term in the direction
of correcting the error.

The correction is then scaled by 2^-7 and sent to the output port. A normalization could
be applied here by dividing by the grand mean, but in practice, simple scaling works well
enough.

4 Examples

4-16

Apply the Correction

The correction output from the Adapt Grand Mean subsystem is then used to scale the
filter coefficients, in this case a Gaussian filter of size 5x5 with a standard deviation of the
default 0.5. In the actual FPGA this filter uses 25 multipliers. Pipelining is of no concern
here since these values are computed well before they are needed. The block samples the
coefficient port when the vStart signal in the input ctrl bus is true.

Going Further

In this simple example, you could alternatively apply the correction factor to the scalar
pixel stream and then filter. The architecture shown can expand for more complex
adaptive changes in the filter coefficients.

The 5x5 multiply of the correction factor with the gaussian coefficients could be
implemented as a single serial multiplier rather than 25 parallel multipliers. To achieve
this HDL implementation, include the Product block in a Subsystem, and right-click the
Subsystem to open the HDL Block Properties. Set the SharingFactor property to 25 to
implement a single time-multiplexed multiplier. With this setting, the multiply operation

 Adapt Image Filter Coefficients from Frame to Frame

4-17

uses a 25-times faster clock than the rest of the design. Consider your required pixel
clock speed and whether your device can accommodate the faster rate.

See Also
Blocks
Image Filter | Image Statistics | ROI Selector

4 Examples

4-18

